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Abstract 

 

 

Accommodating large increases in sample workloads has presented one of the biggest challenges 

to clinical laboratories during the COVID-19 pandemic.  Despite the implementation of new 

automated detection systems, and previous efficiencies such as barcoding, electronic data 

transfer and extensive robotics, throughput capacities have struggled to meet the demand. 

Sample pooling has been suggested as an additional strategy to further address this need. The 

greatest concern with this approach in a clinical setting is the potential for reduced sensitivity, 

particularly the risk of false negative results when weak positive samples are pooled.  To 

investigate this possibility, detection rates in pooled samples were evaluated, with extensive 

assessment of pools containing weak positive specimens. Additionally, the frequency of 

occurrence of weak positive samples across ten weeks of the pandemic were reviewed.  Weak 

positive specimens were detected in all five-sample pools but failed to be detected in four of the 

24 nine-sample pools tested. Weak positive samples comprised an average 16.5% of the positive 

specimens tested during the pandemic thus far, slightly increasing in frequency during later 

weeks. Other aspects of the testing process should be considered, however, such as accessioning 

and reporting, which are not streamlined and may be complicated by pooling procedures. 

Therefore, the impact on the entire laboratory process needs to be carefully assessed prior to 

implementing such a strategy.          
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Introduction  

 

The COVID-19 pandemic has presented numerous challenges to the health care industry in 

general and laboratory testing specifically.  Not least among the latter has been a dramatic 

increase in sample testing load (1). Efforts to meet the demand have included increased use of 

automated instrumentation, multiplexing of molecular detection assays, streamlined testing 

protocols, as well as increasingly varied acceptable sample types, collection devices and 

transport media (2-4). Accommodating the testing workload and reagent shortage during the 

symptomatic pandemic wave was a significant undertaking (1). However, the more recent task, 

to test returning healthcare workers as well as patients returning for services such as non-

essential surgery and other clinical procedures, has generated an even greater challenge.  One 

proposed solution has been sample pooling (5-8), a method previously used for numerous other 

situations where large scale testing was needed (9-12).  

   

When used as an epidemiological surveillance tool, acceptable parameters and limits may be 

quite different to those when the same system is applied in a clinical testing setting (6, 13-16).  In 

the latter, the issue of detection sensitivity for every individual specimen becomes critical.  

Methods for pooling vary widely and testing large numbers of pooled samples is not possible 

without an inherent loss of sensitivity.  However, there is the potential for more limited pooling, 

without loss of sensitivity.  We sought to investigate to what extent this was possible, while 

maintaining the detection of weak positive samples.   

  

Methods:   

 

The CDC 2019 nCoV Real-Time RT-PCR Diagnostic Panel (17-19) was used throughout, with 

extraction on the bioMerieux EMAG® (bioMerieux Inc, Durham, NC).  For individual 

specimens, 110µL of Viral Transport Media (VTM, Regeneron, Rensselaer) or Molecular 

Transport Media (MTM, PrimeStore, LongHorn, San Antonio, TX) from upper respiratory swab, 

was added to 2mL NucliSens Lysis Buffer (bioMerieux) and extracted into 110µL of eluate. 

 

The bioMerieux EMAG extraction system will accommodate a maximum volume of 3ml. 

Therefore, a maximum of nine samples (110 µL per sample) could be added to a 2ml lysis buffer 

tube without exceeding the maximum volume, while maintaining the same input volume per 

specimen. If the same extraction efficiency is maintained when nine samples are loaded in the 

tube as when one is loaded, and the eluate is still 110µL, theoretically the same total nucleic acid 

from each sample should be extracted.  Provided there is no increase in the PCR inhibition of the 

pooled eluate, the detection sensitivity should therefore also still be the same.    

   

Pool sizes of five and nine samples were tested, with each pool containing a single positive 

specimen. For specimen pooling, 110µL each of one positive, and either four (five-sample pool) 

or eight (nine-sample pool) negative specimens were added, at random, to 2mL of lysis buffer, in 

triplicate, extracted and eluted into 110µL of elution buffer.   

In an initial experiment, strong and moderate positive samples in VTM were tested in each size 

pool. In a second experiment, four weak positive specimens in VTM and four weak positive 

specimens in MTM, were tested in both five and nine sample pools, in triplicate.  
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Additionally, the percentage of positive samples at different viral loads, as assessed by Ct value, 

was reviewed across nine weeks of the pandemic, to determine if these weak positive specimens 

comprise a significant component of total tested specimens and whether the proportion has 

changed over the course of the pandemic.      

 

Results:   

 

Pooling of samples with lower Ct values did not cause a loss of detection of any of the individual 

positive samples in either the five- or nine-sample pools (Table 1), although in one of the nine-

sample pools, the detection became inconclusive rather than positive (specimen D). The Ct 

values of positive samples were increased by 0.4 to 1.51 when pooled with four negative 

samples. In contrast, pooling with 8 negative samples caused Ct increases ranging from 0.94 to 

8.49.  

 

When weak positive samples were pooled with four or eight negative samples (Table 2), the 

positive samples were still all detected in five-sample pools, whether they were in VTM or MTM 

transport media. When combined in nine-sample pools, detection was more adversely affected 

for samples in VTM than those in MTM.  For samples in MTM, one of three replicates for one 

sample, failed to be detected in a pool of nine samples.  In contrast, for weak positive specimens 

in VTM transport media, nine-sample pools caused multiple replicates to return negative results.  

 

We then sought to assess what component of the total specimens tested are comprised of these 

weak positive specimens, to evaluate how much of an impact pooling might have overall on 

testing sensitivity across positive patient detection in the pandemic. Further, to assess the 

positivity rate during the months since the onset of the pandemic in New York, since pooling 

strategies are not efficient unless sample positivity is low.  Despite the large range in number of 

specimens tested per day from late February through mid-May (Figure 1), the percentages of 

specimens with viral loads ranging from very strong (Ct < 20), strong (Ct 21-25), moderate (Ct 

26-30), weak (Ct 31-35) and very weak (Ct 36-40) remained remarkably constant, with the 

exception of those in the very weak range which increased slightly during the last five weeks.  

Overall, this weak positive sample type constituted an average 16.5% of positive specimens, a 

substantial proportion of the positive specimens received for testing.  

Positivity rates among samples received at this facility rose to almost 30% during March and has 

continually dropped since early April, remaining below 5% since 10th May and below 1.5% since 

May 16.      

 

Discussion 

 

As the pandemic evolves, despite case counts, hospitalization rates and fatalities decreasing in 

some areas, laboratories continue to face new challenges.  Workloads have increased with, for 

example, requirements to perform repeated surveillance screening of asymptomatic health care 

workers and testing of patients undergoing elective procedures where there is a risk of aerosol 

production. These policies have pushed test numbers beyond those encountered even at the 

height of the pandemic wave.  Suggestions to help manage the load have included pooling of 

samples to enhance throughput capacity. When being considered for application in a clinical 

testing environment, of greatest concerns is the potential for this strategy to increase the false 
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negative rate.  With that, the greatest risk of false negative results is with weak positive samples.  

To investigate the potential limits of pooling in this situation, this study focused on pooling weak 

positive samples in relatively small size sample pools. Had these been successful, larger pools 

would have been attempted.   

 

There are multiple methods for pooling samples, some of which carry an inherent risk of 

reducing test sensitivity and some of which do not.  The method described in this paper, where 

the same volume of each sample is added to lysis buffer as would normally be added if the 

sample were being tested individually, does not theoretically adversely affect sensitivity, as long 

as extraction efficiency is maintained and the level of PCR inhibition is not increased by the 

additional load through the extraction device. When the data was analyzed, despite some minor 

shifts in Ct values, no loss of detection was observed in any of the five-pool experiments, for 

samples that had been collected in either VTM or MTM.  However, when the same weak 

positive samples were pooled with 8 negative samples rather than 4, to create pools of 9, 

detection failures were observed.  In three of the 9-sample VTM pools and one of the 9-sample 

MTM pools, this larger pool size resulted in a complete loss of detection.  Whether the less 

frequent occurrence in MTM samples compared to VTM samples is significant is difficult to say 

based on this limited data.   

 

The use of pooling as a throughput enhancement strategy is only efficient if the positivity rate in 

the samples being tested is low enough that a minimal number of pools will test positive, 

otherwise, multiple pools will have to be deconvoluted for retesting of individual samples.  The 

optimal or maximum positivity level at which pooling starts to become efficient, depends on the 

pool size being used.  For pool sizes as small as 5 samples, this maximum positivity level is 

considerably higher than that for very large pool sizes that are sometimes suggested for large 

scale epidemiological screening studies.  For example, at a positivity rate of 1% and a pool size 

of 5, on average, only 1 in every 20 pools will be positive and need to be deconvoluted for 

retesting.  Therefore, for every 100 samples, testing could be achieved with a total of 25 tests (20 

pools and one deconvoluted pool).  We noted that the positivity rate in our own lab is now 

approaching 1% and therefore such a strategy may be efficient for extraction and detection.  

Moreover, as the pandemic has progressed, there has been an increasing proportion of samples in 

the weak positive range, and therefore major consideration must be given to the issue of 

detection sensitivity for these weak samples.  It must be noted however, that extraction and 

detection are not the only components of the laboratory operation and a pooling strategy does not 

enhance other aspects and may in fact create complications.  

 

Processes for specimen receiving and accessioning, as well as those for result data management 

and reporting, are not reduced by pooling strategies.  These procedures may be complicated by 

sample pooling, especially for electronic data transfer programs and laboratory information 

systems.  A large increase in test load facilitated by a pooling strategy, may create serious 

workload bottlenecks for these and other areas of the operation.  Therefore, the global 

implications of a pooling strategy need to be carefully assessed, especially in the clinical testing 

environment, before implementation.   
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Table 1:  Effect of pooling SARS-CoV-2 positive NPS specimens with multiple negative 

NPS specimens. 

 

  N1* N2* 

Pool Size 
Positive 

Specimens# 
 Sample Ct  Pool Ct ∆ Ct 

 Sample 

Ct  
Pool Ct ∆ Ct 

5 sample 

A 18.60 19.00 0.40 19.17 19.59 0.42 

B 24.27 25.18 0.90 24.40 25.41 1.01 

C 29.61 30.44 0.83 29.85 30.46 0.61 

 D 33.09 32.59 -0.50 32.25 33.76 1.51 

9 sample 

A 18.60 22.71 4.11 19.17 22.79 3.62 

B 24.27 25.33 1.06 24.40 25.34 0.94 

C 29.61 30.57 0.95 29.85 30.85 0.99 

D 33.09 36.20 3.11 32.25 40.74 8.49 
* Virus real-time RT-PCR assay target 
# in VTM  
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Table 2: Effect of pooling low-titer SARS-CoV-2 positive NPS specimens with multiple 

negative NPS specimens. 

 

  N1 N2 

Pool Size  
Positive 

Sample  

PCR 

Pos./No. 

Replicates 

Sample 

Ct 

Pool 

Ct¹ 
∆ Ct ¹ 

Sample 

Ct 

Pool 

Ct¹ 
∆ Ct ¹ 

5 sample 

MTM 

A 3/3 33.40 34.75 1.35 33.96 35.56 1.60 

B 3/3 35.10 36.40 1.30 37.22 37.69 0.47 

C 2/2 34.13 35.35 0.89 35.95 37.86 1.49 

D 3/3 33.76 33.45 -0.31 35.13 34.27 -0.86 

9 sample 

MTM 

A 2/3 3 33.40 34.90 1.50 33.96 36.52 2.56 

B 3/3 35.10 36.63 1.53 37.22 38.31 1.09 

C 3/3 34.13 35.40 1.27 35.95 37.88 1.93 

D 3/3 33.76 33.95 0.19 35.13 35.46 0.33 

5 sample 

VTM 

A 3/3 35.56 35.89 0.33 35.63 36.40 0.81 

B 3/3 35.15 34.70 -0.45 34.29 36.09 1.80 

C 3/3 36.13 36.52 0.39 38.05 36.81 -1.24 

D 3/3 36.23 35.31 -0.92 39.07 36.83 -2.24 

9 sample 

VTM 

A 1/32, 3 35.56 36.12 0.56 35.63 39.51 3.95 

B 3/3 35.15 35.24 0.09 34.29 36.00 1.71 

C 2/32 36.13 36.52 0.38 38.05 37.59 -0.46 

D 3/3 36.23 36.11 -0.12 39.07 37.07 -2.00 

 
1 Values represent the mean of 3 replicates, unless otherwise noted  
2 N1 was undetected for one of three replicates 
3 N1 and N2 were undetected for one of three replicates 
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Figure legends 

 

Figure 1. Number of specimens tested per day at the Wadsworth Center for SARS-CoV-2, from 

February 29 to May 16, 2020. Negative specimens in blue bars, positive specimens in red bars.   

 

 

 

Figure 2. Percentage of specimens in each category of viral load, as approximated by Ct range, 

by week, from week starting 3//9/20 to week starting 5/11/20.  Ct values are the average of the 

N1 and N2 value for each specimen.  
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